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IMPACT DYNAMICS OF DAMAGED SHELLS

INTERACTING WITH A TWO-PHASE LIQUID

UDC 532.529 + 539.4V. A. Petushkov and A. N. Mel’sitov

The propagation of shock waves in a system consisting of a deformable medium with damage and
a two-phase liquid with gas or vapor bubbles are studied. The nonlinear interaction of the media
are modeled taking into account phase transformations in the liquid and the damage kinetics of the
deformable medium.
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Introduction. Cavitation and boiling processes transform liquids to two-phase gas– and vapor–liquid media.
The occurrence of dispersed particles of even low concentration in a continuous liquid significantly changes the nature
of shock-wave propagation in it and the wave processes as a whole, resulting in the occurrence of additional local
mechanisms of loading and failure of the structures interacting with the liquid.

The material of such structures is also inhomogeneous and includes scattered microdefects of original tech-
nological origin (micropores, microcracks, rigid inclusions, etc.) and those resulting from deformation.

All these microdefects affect the rheological and strength properties of the material and, combining into
clusters, lead to the occurrence of main cracks and disastrous failure of the structures. Regarding the microdefects
as dispersed particles, it is possible to treat the deformable medium as a two-phase liquid with a very viscous carrier
phase [1].

In high-velocity impact interactions, the dynamic response of such two-phase media is a system of interrelated
interphase and intraphase phenomena and processes of different physical natures and different spatial and temporal
scales.

Because there have not been systematic experimental studies of these phenomena and processes, there are
no well-founded theoretical models for their description. Such experiments are extremely difficult to perform [2, 3].

In this connection, the construction of an adequate conventional system of equations for unsteady two-phase
flows still remains an unsolved problem of the mechanics of heterogeneous media. The use of the complete system
of nonlinear dynamic equations for multiphase media is also complicated in practice by the mathematical difficulties
arising in their numerical solution [1, 3–5].

In practice, such systems are commonly studied using the conventional approaches of continuum mechanics
and approximating the two-phase medium by its components in a single-phase state with known physical, thermo-
dynamic, and mechanical parameters.

The behavior of a continuous liquid, and vapor (gas) bubbles, structures, and microdamage is described
separately by solving the corresponding boundary-value problems, and the interactions between them are described
by coupling equations that adequately reflect the processes occurring at the interfaces and ensure the required
modeling accuracy.

The present paper proposes a unified approach to describing the interaction of a two-phase liquid with gas or
vapor bubbles and a deformable medium with microdefects. In this case, the deformable medium is also treated as a
two-phase liquid, and an individual microdefect is represented as a gas bubble. The failure of the structure material
is treated as the evolution of the microdefects resulting from plastic flow up to the formation of a macrocrack.
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The relationship between the volume of the disperse phase and the processes in the liquid is established
from the velocities and pressure, and in the deformable body, it is established using the corresponding rheological
equations.

The boundary-value problem of the dynamics of two-phase media, including the equations of phase in-
teraction and phase transformations, is nonlinear. Its solution is constructed on the basis of the finite-element
method (FEM), which, by virtue its discrete nature, is well combined with the approach used to schematize two-
phase media [6–8].

According to this approach, each macroscopic point of the medium is put in correspondence to a cell (finite
element) that contains a sample dispersed particle and the part of the carrier phase associated with it. The distribu-
tion of the main microparameters inside the cell is described by the equations of the corresponding microprocesses
with boundary conditions on its surface.

The types and size of the cells is determined by the required accuracy of approximation of the geometry of
the problem and its solution in the space being considered. The corresponding semidescrete equations of the FEM
in the time layer are then solved using optimal (rational) finite-difference schemes [9–11].

In the present paper, the practically important problem of the shock loading of a structure filled with a two-
phase compressible fluid (water) with gas (air) bubbles under normal conditions or with vapor bubbles in the initial
stage of boiling is solved taking into account the damage to the structure material during nonlinear deformation.

1. Boundary-Value Problem of the Dynamics of Heterogeneous Media. We consider shock-wave
propagation in a two-phase liquid occupying a domain D in a channel with deformable walls in space R

3.
At the time t = 0, the two-phase medium is assumed to consist of a liquid (a carrier phase, i = 1, domain D1)

of volume concentration α1 and density ρ0
1 (sound velocity C̄1) and gas or vapor bubbles (disperse phase, i = 2,

domain D2) of volume concentration α2 (α2
2 � 1) containing a material of true density ρ0

2. In this case, α1 +α2 = 1
and the true and reduced densities ρi of the ith phase are linked by the relation ρ0

i = ρi/αi. Thus, we consider only
the relative fraction of the volume occupied by each phase and ignore the relative position of the phases.

The motion of bubbles relative to the liquid leads to variation in the bubble shape and failure and should
be taken into account for viscous liquids with an abrupt change in the particle velocity, which can be estimated by
the values of the Weber and Bond numbers [1].

It is assumed [12, 13] that any unit volume of the liquid contains n spherical bubbles of radius R; in this
case, the volume concentration of the bubbles is α2 = (4/3)πR3n.

The material of the walls of the deformable channel or any other structure interacting with a bubble liquid
can also be treated as a similar liquid consisting of a very viscous carrier phase of true density ρ0

3 and viscosity µ3

and a disperse phase in the form of microdefects of volume concentration α3 (α2
3 � 1).

Let the two-phase medium occupy a bounded space Ω = D∪S, where Ω ∈ R
3, D = D1 ∪D2, and S(xk, t) is

the surface of the walls of the channel interacting with the medium. With a simultaneous consideration of the
deformable structure, for example, the channel walls, the surface S becomes the inner discontinuity boundary
between the media.

Assuming that the structure occupies an open domain D3, for the entire system as a whole, we can set
D = D1 ∪D2 ∪D3 and S∗(xk, t) = Ω \R

3 — the boundary of the open domain; t ∈ Dt = (0, τ), where τ is the time
interval. The position of points in the space is defined in Cartesian coordinates xk ∈ Ω (k = 1, 2, 3).

A mathematical model for the hydrodynamic flows of the liquids being considered can be obtained as a
particular case from the conservation equations for heterogeneous media taking into account the behavior of each
phase and the interactions between them [1, 4, 5].

These equations include averaged functions and their derivatives with respect to the coordinates and time
in the space Ω × Dt. The instantaneous values of the process parameters are averaged over a microvolume δVi

bounded by a surface δSi with normal ni and occupied by the ith phase.
Next, we consider the conservation equations for the multiphase media.
Mass Conservation Equation. The mass conservation equation is written as

∂ρ0
i αi

∂t
+ ∇kρ0

i αiv
k
i = Jji, (1.1)

where vi = {vk
i } is the velocity of macroscopic motion of the ith phase and Jji is the rate of change in the mass of

the jth phase during its transition to the ith phase. For two-phase media, i, j = 1, 2 (i �= j).
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Momentum Conservation Equation. The momentum conservation equation is written as

ρ0
i

divi

dt
= ∇kσk

i + Rji + Jji(vji − vi) + ρ0
i gi. (1.2)

For the ith phase in the mixture, the stress tensor σkl
i is considered symmetric and the components of the spherical

stress tensor σkk
i are proportional to the volume concentration:

σkl
i = −αipiδ

kl + τkl
i , (1/3)σkl

i = −αipi, τkl
i = τ lk

i , τkk
i = 0.

Here ∇kσk
i is the resultant surface-force vector of the ith phase, vji = {vk

ji} is the velocity of macroscopic motion
of the jth phase undergoing a transition to the ith phase, and gi = {gk

i } is the mass force vector.
For small volumetric contents of the disperse-phase material and low velocities of relative motion of the phases

|vi − vj |/vi � 1, the transfer of the pulsation momentum is ignored compared to the macroscopic momentum.
The interphase-interaction forces Rji depend on the loading prehistory; therefore, they are difficult to write

in explicit form. In the most general case, they can be written as Rji = R
(p)
ji + R

(τ)
ji + ∆Rji and characterized by

the action of the pressure forces R
(p)
ji , shear stresses R

(τ)
ji , and small-scale pressure oscillations ∆Rji.

Energy Conservation Equation. We consider the thermodynamic processes in multiphase media using the
hypothesis of local thermodynamic equilibrium within the material of each separate phase. This allows us to
introduce a local temperature Ti at each point of the phases and to use all thermodynamic functions: the internal
energy ui, entropy si, enthalpy ii, free energy ϕi, and thermodynamic potential zi, which are related by the
conventional equations of the equilibrium thermodynamics of single-phase media.

All these functions can be represented as being dependent on two thermodynamic parameters of state, for
example pi = pi(ρ0

i , Ti), and, hence, the material of each phase of the mixture obeys the Gibbs relations

Ti
disi

dt
=

diui

dt
+ pi

di

dt

1
ρ0

i

,

where di/dt = ∂i/∂t + vk
i ∂/∂xk is the substantial derivative.

The total specific energy Ei = ui + v2
i /2 + ki of the ith phase includes the average internal energy ui,

the average kinetic energy of macroscopic motion v2
i /2, and the average kinetic energy of pulsation motion ki.

By analogy, the total specific energy of the entire mixture is defined by the expression E = u + Ki + k, whose
components for the two-phase medium can be written as

ρu=ρ0
1u1 + ρ0

2u2, ρKi = ρ0
1v

2
1/2 + ρ0

2v
2
2/2, ρk = ρ0

1k1 + ρ0
2k2,

where vi is the reduced velocity of the material of the ith phase.
The average interphase energy flux on the surface S12 due to the phase transition of the jth phase to the

ith phase is given by

Eji = Wji + Qji + Jji(uji + (vji)2/2 + (δvi)2/2)

and includes the work of interphase forces Wji, the internal energy Jjiuji, the kinetic energy of macroscopic motion
of the jth phase undergoing a phase transition to the ith phase, Jji((vji)2/2), the kinetic energy of pulsation
(small-scale) motion of the ith phase Jji((δvi)2/2), the interphase heat flux Qji, where vji is the reduced velocity
of macroscopic motion of the material of the jth phase undergoing a phase transition to the ith phase; and δvi is
the reduced velocity of pulsation (small-scale) motion of the material of phase i.

In view of the above concepts, the energy conservation condition for the ith phase includes the following
equations:

— The equation describing the variation of the total energy E21 + E12 = 0

ρi
di

dt

(
ui + ki +

v2
i

2

)
= ∇k(ck

i − qk
i ) + Eji − Jji

(
ui + ki +

v2
i

2

)
+ ρig

l
iv

l
i, (1.3a)

where {qk
i } is average heat flux vector; {ck

i } is the average energy flux vector along the surface δSi of the distin-
guished volume δVi;

— The equation of variation of the average internal energy

ρi
diui

dt
= ρiAi −∇kqk

i + Qji −∇kΓk
i + Jji(uji − ui), (1.3b)
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where {Γk
i } is the vector of variation of the internal energy of the ith phase due to the mass influx from the pulsation

motion;
— The energy equation for the pulsation (small-scale) motion

ρi
diki

dt
= σkl

i ∇kvl
i − ρiAi + Wji − Rl

jiv
l
i + ∇lΛk

i + ρihi + Jji(kji − ki), (1.3c)

where ρiAi is determined by the work of internal forces per unit time in unit mass of the ith phase, {Λk
i } is a vector

that defines the energy flux of the pulsation (small-scale) motion and the work of surface forces in this direction in
the ith phase, and

kji = (vji − vi)2/2 + (δv2
i )/2.

Entropy Conservation Equation. The irreversibility of the interaction of the mixture components is taken
into account by a dissipative function that defines the variation of the entropy s of the mixture due to internal
processes for a fixed mass of the mixture.

For the case of minor temperature nonequilibrium between the ith and jth phases, where (Ti − Tj)/Ti � 1
and (Ti − Ts)/Ts � 1, this function is considerably simplified. For two-phase media, the following relations are
valid:

ii = iis + cis(Ti − Ts), i2s − i1s = i12s,

si = sis + cis(Ti − Ts)/Ts, s2s − s1s = l12(p)/Ts, T = T1 = T2 = Ts(p).
(1.4)

Here ci is the heat capacity of the ith phase at a constant pressure and i12 is the enthalpy of one of the phases
undergoing a phase transition, and l12(p) is the heat of the phase transition; the subscript s indicates that the ith
phase is in the state of saturation.

The boundary-value problem (1.1)–(1.4) of the dynamics of multiphase media should be supplemented by
relations describing intraphase interactions (τkl

i and qk
i ) and interphase interactions (Fij , Qij , and Jij), conditions

for the finiteness of the divergence of the disperse-phase velocity and the heat flux at the center of the dispersed
particle (i.e., ∇v2 = 0 and ∇q2 = 0), and averaged conditions at the interface.

In addition, one must specify the external actions on the media considered, including the body forces gi and
surface forces F∆, heat fluxes Q∆, and diffusion fluxes J∆, and the corresponding boundary and initial conditions,
which are determined by a particular problem.

The propagation of shock waves in a multiphase medium disturbs its structure and the above equations
become invalid. In this case, the zone of the medium at the shock front is treated as a discontinuity surface, on
both side of which the continuity conditions for the motion parameters of the medium are satisfied [1, 11].

2. Mathematical Models for the Two-Phase Liquids and Deformable Media. Taking into account
the structural features of the two-phase media considered and the processes occurring in them, one can considerably
simplify Eqs. (1.1)–(1.4). The simplifications concern primarily the schematization of the media and the descrip-
tion of the disperse phase, allowing one to construct effective models for the numerical modeling of shock-wave
propagation in two-phase liquids with gas or vapor bubbles [5–7].

The equations of motion for deformable media with damage are also a particular case of the boundary-value
problem formulated above . For a deformable structure, its material as a carrier phase is assumed to be a very
viscous liquid and the disperse phase is treated as microdefects in it in the form of very small gas bubbles of a
spherical shape. Such conditions occur for very small Reynolds numbers Rep =

√
p3/ρ0

3 R/(µ3/ρ0
3) � 1, where p3 is

the pressure of the carrier phase of the medium.
The behavior of the bubble gas can be considered isothermal and the inertia effects due to the motion of

the bubble walls and the motion of the bubbles relative to the liquid can be ignored. The difference in pressures
between the carrier and disperse phases is compensated by the viscous forces in the carrier phase, which is generally
considered compressible.

The corresponding boundary-value problem is split into a system of equations describing the deformation of
the medium (structure) considered and the kinetic equation for the microdamage [14].

The wave processes in the solid material with microdamage result in relaxation effects and a transition of
elastic to plastic strains. These processes are treated as first-order phase transitions if they involve a change of
internal energy, and as second-order phase transitions if they involve a change of physicomechanical properties
[1, 14].
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For the material with damage, the shear modulus µ̄, the bulk modulus K̄, and Poisson’s constant ν̄ can be
expressed in terms of the corresponding parameters for the continuous material:

µ̄ = µ(1 − d)
(
1 − 6K + 12µ

9K + 8µ
d
)
, K̄ =

4µ̄K(1 − d)
4µ + 3Kd

, ν̄ =
3K̄ − 2µ̄

2(3K̄ + µ̄)
, (2.1)

where d is the relative volume of micropores or the damage parameter d = (δV − δVS)/δV , and δV , as above, is
the unit volume, and δVS is the volume of micropores in unit volume of the deformable medium.

The variation of the damage d is regarded as a combination of the processes of random initiation of new
microdefects dn(t) and the development of existing microdefects dg(t):

ḋ(t) = ḋn(t) + ḋg(t). (2.2)

The rates of these processes are defined with good accuracy by the relation

ḋn(t) = 8πR0N0 exp
p − p0

p1
and ḋg(t) = (1 − d(t))

dεT

dt
,

where R0 is the normal-distribution parameter, N0 and p1 are material constants; p0 is the limiting pressure of
formation of microdefects; dεT /dt is the rate of change of the effective plastic strain, which is defined by the first
invariant of the plastic strain rate tensor ε̇kl.

For the compressible material, the formation of new microdamage and the evolution of existing microdamage
under the action of a rarefaction shock wave can be described using the model of [15].

Failure of the structure material occurs when the damage parameter d reaches the limiting level dF . For the
majority of metals, dF = 18–28%, and the initial damage level normally does not exceed 4%.

Because of the compressibility of pores, the solid materials involved in plastic flow is also compressed.
Therefore, the yield function becomes [15]

f = f(I1, I2, d) = I
1/2
2 + ndI2

1 , (2.3)

where I1 = tr (T ) and I2 = (1/2)tr (T ′ · T ′) are invariants of the stress tensor T ≈ σkl, I is the unit Kronecker
tensor, and n is a material parameter.

3. Numerical Solution Scheme. The boundary-value problem (1.1)–(1.4), (2.1)–(2.3), which describes
fast wave processes in liquids with gas or vapor bubbles and in deformable media with damage, is nonlinear and is
solved numerically using schemes that were tested earlier and presented for example, in [6–8, 14].

By virtue of the different natures and different spatial and temporal scales of the phenomena and processes
occurring in such systems, the well-known approach based on the decomposition of the solution into processes or
the splitting method [16] is used.

The deformable medium and the liquid interacting with it are approximated by a system of volume finite

elements ∆k in such a manner that Ω ≈ Ωh =
M⋃

k=1

∆k, where M is the total number of finite elements in the liquid

and in the deformable medium; ∆l/∆m = Ø if l �= m.
The finite elements adjoining the discontinuity boundary S(xk, t) have coincident units of the finite-element

grid.
The duration Dt of each of the examined processes is divided uniformly into N intervals of duration ∆t. In-

tegration over time is performed using a unilateral difference scheme; as a result we obtain an explicit computational
scheme.

Each of the volume finite elements in the liquid is treated as a cell containing a sample dispersed particle (a
conditional gas or vapor bubble), whose volume is equal to the total volume of the real bubbles in the liquid. It is
assumed in this case that all bubbles contained in such a cell oscillate identically. The liquid pressure variation is
due to the volume variation of the disperse phase present in it.

For the chosen finite-element grid, the time integration step ∆t is determined using well-known criteria and
is refined during the numerical experiment. The “internal” equations of the boundary-value problem (1.2)–(1.4)
describing the phase interactions and phase transformations are integrated using the Runge–Kutta method. The
time integration step ∆t for this numerical scheme is found by the criteria adopted in the given method.

The chosen integration steps for the time layer Dt are refined during the numerical experiment, in particular,
by solving the wave problem for a liquid in a single-phase state.
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Fig. 1. Nonlinear deformation of conical shells with a two-phase liquid subjected to pulsed pressure.

4. Solution of an Applied Problem. We model shock-wave loading of deformable coaxial conical shells
which form a channel filled with a liquid medium comprising a compressible carrier phase and a disperse phase in
the form of gas or vapor bubbles (Fig. 1).

The sections I, A, and II lie in planes perpendicular to the symmetry axis OZ of the shells. The sections I
and II are boundaries. The section A divides the structure into two equal parts.

The radius of the outer shell at the base is R1 = 1.0 m, the conicity is l1 = 0.75, and the wall thickness is
constant (h1 = 0.005 m); the radius of the inner shell at the base is R2 = 0.5 m, the conicity is l2 = 0.75, and the
wall thickness is constant (h2 = 0.003 m). The length of the shells along the generatrix is Lb = 3 m.

The shells are made of steel of density ρ = 7810 kg/m3 with a bulk modulus K = 150 GPa, a shear modulus
µ = 70 GPa, Poisson’s constant ν = 0.3, and a yield strength σ0.2 = 200 MPa. The strain diagram of the shell
material is given in Fig. 1. It is assumed that at the initial time, the microdamage in the material is distributed
uniformly with a concentration d = 0.04.

From outside, the surface S∗(xi, t) of the outer shell is loaded by a compression pressure pulse (Fig. 1) which
is constant along its length and distributed along the half-perimeter according to the relation

Pout = P̄out cosφ, 0 � φ � π. (3.1)

The pressure P̄out varies during the time tb = 0.39 msec as

P̄out =

⎧
⎨
⎩

kpt, t < t1;
kpt1, t1 < t < t2;

kp(t2 − t), t2 < t < tb

(3.2)

reaching the maximum value P̄out = 20 MPa at the time t = t1. Here t1 = 0.13 msec, t2 = 0.26 msec, and
kp = 0.75 · 105 MPa.

The space in the channel between the coaxial shells is filled with a two-phase medium containing water with
air bubbles under normal conditions or water with vapor bubbles in the initial stage of water boiling.

The compressibility of the carrier phase is assumed to be small and is considered in an acoustic approximation.
The disperse phase is represented as spherical bubbles of the same size, which are uniformly distributed in the liquid.
According to (1.1), the volume concentration of the disperse phase is set equal to α2 = 0.01. The initial size of each
bubble is R0 = 0.134 mm.

At the initial time, under normal conditions (p0 = 0.1 MPa), the continuous liquid medium and the two-
phase gas–liquid medium are at room temperature T0 = 293 K, and the vapor–liquid medium is at the saturation
temperature T0 = Ts(p0) = 373 K. In this case, the initial density of the vapor coincides with the density of the
saturated vapor ρ0

20 = ρ0
2S .

The values of the thermal parameters for the media considered are taken from [1] and are considered constant.
The effective Nusselt numbers for the phases are the same as in [6, 7]. For the liquid at T0 = 373 K, we have
Nu1 = 195.0, for the vapor under the same conditions, Nu2 = 14.0, and for air at T0 = 293 K, Nu2 = 16.5.
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TABLE 1

Section A (z = 0.25 m)

Point number Distance from the axis OZ, m

68 l68 = 0.862
61 l61 = 0.71
51 l51 = 0.47

Because the problem is symmetric, we consider half of the structure (section A in Fig. 1) with known
boundary conditions at the ends and for the plane of symmetry Y OZ of the shells.

At the time t = 0, the initial state for the shells and liquid is assumed to be free of strains.
The conditions on the discontinuity boundary — the channel surface S(xk, t) adjoining the liquid — are as

follows:
(σ1

ij − σ2
ij)nj = 0, x1

k = x2
k, xk ∈ S × Dt,

v1
i − v2

i = 0, t ∈ Dt

(3.3)

[the superscripts 1 and 2 denote the deformable medium and the two-phase liquid, respectively, which are on both
sides of the boundary S(xk, t) with the normal nj ].

To model conditions (3.3), in the contact zone we use the sequential computation algorithm described [8,
11], which provides correct discontinuity conditions and allows one to combine different methods for solving coupled
problems of continuum mechanics.

During propagation of shock waves in vapor– and gas–liquid media, the air and vapor bubbles can change
their initial shape, become unstable, and fail.

Accounting for these phenomena is an extremely difficult problem for modeling. One usually impose limi-
tations on the minimum sizes of the gas bubble (Rmin = 50 µm) and vapor bubble (Rmin = 5 µm) upon reaching
which they collapse. Thus, in order that a vapor bubble fail under external compression, its initial size should only
decrease a factor of ten [17]. Below, the possibility of transition of the bubbles to an unstable state is traced by the
current values of the Reynolds, Bond, and Weber numbers [1].

The wave processes occurring in the system considered under the action of a pressure pulse in the form (3.1)
are illustrated in Fig. 2 for the three points of section A of the shells given in Table 1.

In the continuous medium, the pressure waves, as follows from the figure, differ slightly in shape from the
external action. The pressure wave with the maximum amplitude Pmax = P̄m

out reaches the inner coaxial cone
(point 51) in a time t = 0.25 msec and is reflected from its surface at the time t = 0.54 msec. In the medium
between points 68 and 61, the wave propagation velocity is 1750 m/sec, and on the segment between points 61
and 51, it is 1630 m/sec.

The presence of gas bubbles of even low concentration in the compressible fluid significantly changes the
nature of wave propagation compared to the continuous medium. At the surface of the outer shell (point 68),
the pressure wave is ordinary; propagating into the depth of the medium, it breaks up into two waves. Thus, a
compression wave with an amplitude Pmax = 2.54P̄m

out and an average velocity of 1100 m/sec arrives at the inner
shell (point 51) at the time t = 0.43 msec, and after an interval of 0.07 msec, a second compression wave with a
maximum amplitude Pmax = 1.5P̄m

out and a velocity 875 m/sec arrives at it.
The presence of the gas disperse phase prevents the reflection of the compression wave from the inner of the

deformable coaxial cones because the resulting rarefaction wave disappears as result of an increase in the volume
of the disperse phase. The outer shell is underloaded, and the inner shell is not unloaded by the reflected wave.
A similar phenomenon was observed in some other studies (see, for example, [18]).

A somewhat different pattern of pressure-wave propagation arises in a compressible liquid containing a
vapor disperse phase (Fig. 2). Before the time t = 0.27 msec, there is similarity between the wave processes in
the media considered. However, with time, significant differences occur, the main of which are the absence of a
distinct separation of the wave and the occurrence of rarefaction due to collapse of vapor bubbles in the medium
and reflection of the pressure wave from the surface of the inner coaxial cone.

In the vapor–liquid medium, the pressure wave with a maximum amplitude Pmax = 2.56P̄m
out propagates at

a velocity of 1050 m/sec and reaches the inner coaxial cone (point 51) at almost the same time t = 0.43 msec as in
the liquid with gas bubbles.

122



t, msec0.2

68

68

68

61

61

61

51

51

51

0.4 0.6

P, MPa

P, MPa

Pout

Pout

Pout

P, MPa

_10

10

20

20

40

_20

0

0

40

20

_20

0

t, msec0.2 0.4 0.60

t, msec0.2 0.4 0.60

b

à

c

Fig. 2. Time histories of pressure in media filling the channel between coaxial shells: (a) continuous
liquid; (b) gas–liquid medium; (c) vapor–liquid medium.

As a result of collapse, the vapor bubbles disappear, the medium at the shell surface becomes continuous,
and the compression wave is reflected from the shell surface by the rarefaction wave at the time t = 0.56 msec.

The interaction of the indicated media with the shells is illustrated by the pressure profiles on their surface
in the section A (Fig. 3).

The compression exerted by the liquid on the outer shell begins to act almost immediately after it is loaded
by the pressure pulse. The compression wave arrives at the inner shell at different times for different media. The
action of the vapor–liquid medium on the shells is longer than that of the gas–liquid medium.

The strain state of the shells is completely determined by the loading characteristics (Fig. 4). Table 2 gives
the displacements of the points y1, y2, and x1 of the section I of the shells (Figs. 1 and 4) for the different media.

If the liquid contains gas bubbles, the outer coaxial shell is deformed to a lesser extent than in the case of
continuous liquid. In this case, the inner shell is compressed more strongly in the direction of action of the pressure
pulse and is protruded in the central part along the OX axis because of the absence of unloading by the reflected
rarefaction wave.

For the liquid with vapor bubbles, the outer shell is deformed to a greater extent than for the continuous
medium and the inner shell to a lesser extent than for a gas–liquid medium, because of the longer unloading by the
reflected wave. Thus, the vapor–liquid medium considered plays the role of a peculiar shield that prevents failure
of the inner shell.

The differences in the nature and levels of dynamic loading of the shells in the cases considered above are
responsible for differences in the kinetics of damage accumulation and damage levels of the shell material (Fig. 5).
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Fig. 3. Pressure distributions along the shell contours in the section A for vari-
ous media and times: (a) continuous liquid; (b) gas–liquid medium; (c) vapor–
liquid medium.

For the shells filled with the continuous medium, the damage accumulated in the material of the outer shell
by the time t = 0.9 msec is insignificant (d ≈ 5%) and is concentrated in a small part of the shell. In the material
of the inner shell, damage is intensely accumulated in a layer adjacent to its inner surface with an approximately
constant level along the generatrix, which by the same time reaches the maximum value d ≈ 7%.

In the presence of dispersed particles, the damaged state of the outer shell by the time t = 0.9 msec is similar
in nature and level to that for the continuous medium.

In the case of the gas–liquid medium, the absence of unloading leads to intense accumulation of damage in
the material of the inner shell, whose maximum level at the time t = 0.9 msec reaches d ≈ 14% in its outer layer
with the formation of a distinct main crack.

The far lower levels of action on the inner shell in the case of the vapor–liquid medium is responsible for the
obviously lower damage levels of its material compared even with the case of the single-phase liquid. By the time
t = 0.9 msec, the damage to the shell has a fragmentary nature and the maximum level does not exceed d ≈ 6%.
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Fig. 4. Strain states of shells for different media at the time t = 0.9 msec from the beginning of
loading: (a) continuous liquid; (b) gas–liquid medium; (c) vapor–liquid medium.

TABLE 2

Medium δy1, mm δy2, mm δy3, mm

Continuous liquid 6.3 11.5 8.0
Gas–liquid medium 4.3 24.0 7.6
Vapor–liquid medium 7.4 9.3 10.0
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Fig. 5. Damage levels of the shell material for different media in the channel at the time t = 0.9 msec
from the beginning of loading: (a) continuous liquid; (b) gas–liquid medium; (c) vapor–liquid
medium.

Conclusions.A mathematical model was proposed to describe shock interaction between a deformable
medium with damage and two-phase vapor– and gas–liquid media. The nonlinear deformation and failure of a
structure composed of shells filled with a two-phase compressible liquid with gas or vapor bubbles was modeled
numerically.

Physically reasonable pictures of the modeled phenomena were obtained, and their main parameters were
estimated quantitatively.
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